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Abstract. Diagnostic processes of Alzheimer’s disease (AD) are evolving. Knowledge about disease-specific biomarkers is
constantly increasing and larger volumes of data are being measured from patients. To gain additional benefits from the collected
data, a novel statistical modeling and data visualization system is proposed for supporting clinical diagnosis of AD. The proposed
system computes an evidence-based estimate of a patient’s AD state by comparing his or her heterogeneous neuropsychological,
clinical, and biomarker data to previously diagnosed cases. The AD state in this context denotes a patient’s degree of similarity to
a previously diagnosed disease population. A summary of patient data and results of the computation are displayed in a succinct
Disease State Fingerprint (DSF) visualization. The visualization clearly discloses how patient data contributes to the AD state,
facilitating rapid interpretation of the information. To model the AD state from complex and heterogeneous patient data, a
statistical Disease State Index (DSI) method underlying the DSF has been developed. Using baseline data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), the ability of the DSI to model disease progression from elderly healthy controls to
AD and its ability to predict conversion from mild cognitive impairment (MCI) to AD were assessed. It was found that the DSI
provides well-behaving AD state estimates, corresponding well with the actual diagnoses. For predicting conversion from MCI
to AD, the DSI attains performance similar to state-of-the-art reference classifiers. The results suggest that the DSF establishes
an effective decision support and data visualization framework for improving AD diagnostics, allowing clinicians to rapidly
analyze large quantities of diverse patient data.

Keywords: Alzheimer’s disease, automatic, biomarkers, computer-assisted, decision making, information processing, projections
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INTRODUCTION

Diagnosing Alzheimer’s disease (AD) is a non-
specific, subjective, and error-prone process, espe-
cially in the early phases of the disease [1]. Because
of their inherent difficulty, diagnoses often come late,
taking up to two years after initial memory problems
occur [2]. Current criteria for AD require early and
dominating decline in episodic memory supported by
abnormal biomarkers [3, 4]. If a patient with objective
evidence of cognitive impairment does not yet meet
the criteria for AD or for other dementia, he or she
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is usually diagnosed as having mild cognitive impair-
ment (MCI) [5]. MCI is a heterogeneous state with
several possible outcomes and is associated with an
increased risk of developing AD, particularly when
memory impairment is the predominant symptom [6].
For early diagnosis of AD, a key issue is finding tests
and biomarkers that determine which subjects with
MCI will develop AD. Here, the term ‘biomarker’ is
used in a broad sense, encompassing biologic features
obtained by any and all detection modalities providing
information about the disease.

Diverse sets of neuropsychological tests and
biomarkers have been investigated for their efficacy
to predict conversion from MCI to AD [7–11], and
several studies have shown that combining results
can yield even better predictions [12–14]. Increased
knowledge about cognitive tests and biomarkers has
influenced a recent proposal for a new lexicon, where
the term AD encompasses the whole spectrum of
the disease from predementia to dementia phases and
further emphasizes the combination of clinical and
biomarker data [15]. However, results from many of
the studies are not easily applied in daily diagnostic
work. They may require a specific test pattern that is
not available or is incompatible due to local or national
differences in execution. Occasionally, the statistical
analysis methods lack transparency, making them hard
to incorporate into local decision making processes.
Ultimately, despite all attempts, there have not yet been
findings that would comprehensively differentiate MCI
subjects who develop AD (progressive MCIs, PMCI)
from those who do not (stable MCIs, SMCI).

New approaches for improving the diagnostic pro-
cess in AD are needed. Computer-based analyses
of patient data can quantify information with good
diagnostic accuracy, in some cases comparable to
experienced clinicians [16]. Tools that help manage
the constantly increasing amounts of complex patient
data can increase the quantity of information clini-
cians can examine, and can reveal subtle aspects of
information that are buried under a wealth of clini-
cal data [17, 18]. Clinical decision support systems
(CDSS) have shown their potential in reducing med-
ical errors and increasing health care quality and
efficiency [19–21]. Visualization techniques for ana-
lyzing biomedical and temporal data are already
commonplace [22, 23], and novel clinical information
visualization solutions are constantly being devel-
oped [24–26]. Consequently, a statistical Disease State
Index (DSI) method is proposed for deriving a scalar
value denoting the AD state or progression of AD in
suspected AD patients. In this context, AD state mea-

sures similarity of patient data to previously-diagnosed
healthy and AD populations. While the DSI provides
yet another piece of information to clinicians, its goal
is to distill existing patient data to a few parameters at
a high abstraction level, allowing them to quickly find
relevant information and disregard irrelevant informa-
tion. A Disease State Fingerprint (DSF) visualization
technique is also proposed for displaying patient data
and DSI values in a concise and interpretable format,
extended from earlier research in another biomedical
domain [27]. Together, they offer a decision support
system that allows clinicians to rapidly extract knowl-
edge from large quantities of heterogeneous patient
data and combine them with personal expertise for
making the diagnosis.

The main contributions of this work are the pro-
posal of a novel patient data visualization technique
(DSF) and the definition of an underlying statistical
method for modeling progressing disease state (DSI).
The DSI is evaluated against state-of-the-art classifiers
using baseline data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI); its ability to discriminate
healthy elderly controls, SMCIs, PMCIs, and ADs and
its capability to predict conversion from MCI to AD are
considered. Interpretation of the resulting DSF visual-
izations and characteristics of the proposed system are
reviewed to assess their clinical applicability.

MATERIALS AND METHODS

Alzheimer’s disease neuroimaging initiative
(ADNI)

ADNI is a longitudinal 5-year study of AD con-
ducted in the USA and Canada, with the goal of
developing and validating surrogate markers for early
detection and monitoring of AD progression. After
launching in late 2004, approximately 800 participants,
ranging in age from 55 to 90 years, were recruited for
the study: 200 healthy elderly controls, 400 patients
with diagnosed MCI, and 200 with early diagnosed
AD. Follow-ups of ADNI participants were done by
telephone or in person every 6 to 12 months for a
period of two to three years. All participants underwent
repeated cognitive and neuropsychological testing and
magnetic resonance imaging (MRI) scanning. Other
tests, including positron emission tomography (PET)
and lumbar puncture providing cerebrospinal fluid
(CSF) samples, were done more infrequently and not
necessarily for all participants. Data from the study are
freely available to researchers in an online database
at the UCLA Laboratory of Neuroimaging (LONI)
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Diagnosis:

MCI ⇒ MCI

163 AD subjects
Diagnosis:

AD ⇒ AD
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Diagnosis:
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Fig. 1. Patients were divided into two overlapping subgroups. Correlation to actual diagnoses was evaluated using all subjects, capability to
predict conversion from MCI to AD using only SMCI and PMCI subjects.

website (http://www.loni.ucla.edu/ADNI/). The site
also provides exact information regarding ADNI
neuroimaging instrumentation, procedures, and data
processing.

Study cohorts and data selection

The analyses in this paper included ADNI subjects
who a) had follow-up data available beyond the 12-
month visit period and b) belonged to one of four
diagnostic groups based on the baseline diagnosis and
the latest diagnosis available in the database (accessed
on September 2, 2010). The first three diagnostic
groups included subjects whose latest diagnosis was
the same as the baseline diagnosis, particularly elderly
healthy controls (HC, n = 199), stable MCIs (SMCI,
n = 190), and Alzheimer’s disease (AD, n = 163). The
fourth group was a progressive MCI group (PMCI,
n = 154), whose diagnosis at the baseline of the ADNI
study was MCI, but had converted to AD (on average
after 19 months) over the course of the study. Patients
whose diagnosis had changed otherwise, such as from
MCI or AD to healthy subjects, were excluded from
this study. Study cohort selection is illustrated in Fig. 1
and demographic data for the diagnostic groups are
presented in Table 1.

All analyses were made using baseline measure-
ment data readily available from the ADNI database.
Specifically, patient data obtained from six baseline
tests were used; Alzheimer’s Disease Assessment
Scale-cognitive subscale (ADAS), Mini-Mental State
Examination (MMSE), Trail making test from Neu-
ropsychological Battery (TMT), MRI derived volumes
(MRI), amyloid-� and total tau from CSF, and
apolipoprotein E (APOE). Altogether, analyses were
run with 66 unique patient variables distributed into
the ten distinct datasets, illustrated in Fig. 2. Sparse
and incomplete data were intentionally included to
parallel a realistic clinical setting where not all tests
are administered to all patients. In ADNI, automated
volumetric segmentation of MRI was performed with
the Freesurfer image analysis suite [28], which is

Table 1
Demographic and clinical data of the healthy control (HC), sta-
ble mild cognitive impairment (SMCI), progressive mild cognitive
impairment (PMCI, average conversion time 19 months from base-

line), and Alzheimer’s disease (AD) groups

HC SMCI PMCI AD

Subjects 199 190 154 163
Diagnosis

Baseline HC MCI MCI AD
Latest HC MCI AD AD

Gender
Male 104 (52%) 125 (66%) 93 (60%) 87 (53%)
Female 95 (48%) 65 (34%) 61 (40%) 76 (47%)

Demo-
graphics,
years
Age 75.5 (±5.1) 74.8 (±7.6) 74.2 (±6.9) 74.7 (±7.5)
Education 16.1 (±2.8) 15.8 (±3.1) 15.6 (±2.9) 14.9 (±3.1)

Available
baseline
data
MMSE 199 (100%) 190 (100%) 154 (100%) 163 (100%)
ADAS 199 (100%) 189 (99%) 152 (99%) 160 (98%)
TMT 199 (100%) 186 (98%) 153 (99%) 156 (96%)
MRI 190 (95%) 171 (90%) 135 (88%) 137 (84%)
CSF 102 (52%) 94 (49%) 83 (54%) 90 (55%)
APOE 199 (100%) 190 (100%) 154 (100%) 163 (100%)

The data are expressed as counts and (percentages) of available
data except for age and education, which are expressed as mean
(±standard deviation).

documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). Composite vari-
ables and summaries of test patterns, e.g., total MMSE
score and ADAS 13 point total, were excluded from
the datasets, since the same information was contained
within the individual variables.

Disease state index

To improve interpretability of heterogeneous patient
data, a statistical DSI method has been developed,
deriving a scalar index value indicating the state of
AD in a patient. The rationale of the DSI is to provide
additional evidence-based information by comparing
patient data as a whole to a high number of other cases
with or without the disease. It is principally intended to

http://www.loni.ucla.edu/ADNI/
http://surfer.nmr.mgh.harvard.edu/
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D1 - MMSE
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D2 - ADAS
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Individual tests and 
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Fig. 2. Analyses were run with ten distinct datasets (D1–D10),
formed using variables from six individual tests. The combinations
of tests emulate the effect of having incremental tests done, gradu-
ally increasing knowledge about the patient. The tests and variable
counts included in each dataset are presented in the diagram.

be used with quantitative patient data, such as standard-
ized neuropsychological tests, laboratory test results,
and computer-based analyses of medical imaging data.
Applying the DSI to patient data results in a value
between zero and one, indicating the patient’s disease
state or progression of the disease. The DSI values are
assumed to lie on an interval scale, i.e., one unit on the
scale represents the same magnitude across the whole
range of the scale. Increasing values of DSI indicate an
increasing similarity to AD population, based on the
available data. More specifically, DSI measures how
individual measurement values and patient data as a
whole match the disease profile as defined from a large
number of known disease cases.

DSI is data agnostic and can be used with any data
available. It can determine the disease state between
healthy and typical AD, healthy and atypical AD, MCI
and AD, and potentially between other dementias and
diseases, as long as the training data are available.
DSI is also designed to be highly dynamic, not requir-
ing particular tests but using any data acquired and
available for the patient being studied. Together, these
properties facilitate application of the method at vari-
ous clinics and re-evaluation of patient data as more
test results become available. Choosing a decision

boundary allows the DSI to be considered a supervised
classifier, discriminating between healthy and diseased
patients. Several design requirements were imposed
on the DSI according to five classifier performance
categories defined by Han and Kamber [29], listed in
Table 2.

DSI values are computed from patient data in three
relatively simple steps. First, each individual patient
measurement value, e.g., a single answer in ADAS
or the volume of a brain structure derived from MRI,
is compared to previously known training data using
a fitness function. A fitness function computes the
DSI value for a single patient measurement reveal-
ing which population, healthy or diseased, the value
fits best. Second, observing only values from known
control and disease populations, the relevance of each
variable is computed, independent of the patient mea-
surement. Relevance indicates how well a variable is
able to discriminate between the known healthy and
diseased populations. Evaluation of relevance results
in a value between zero and one, obtaining larger values
as the separation between control and disease popula-
tions increases. Interpretations for different values of
DSI and relevance are listed in Table 3 and they are
derived in full detail in supplementary material (avail-
able online: http://www.j-alz.com/issues/27/vol27-
1.html#supplementarydata07). Third, DSI and rele-
vance values are combined as a weighted arithmetic
mean, where DSI values of individual patient mea-
surements are weighted by the variable relevancies,
to obtain composite DSI values for tests done with the

Table 2
Design goals for the Disease State Index method

Category Goals for Disease State Index

Interpretability Provides well-behaving index values that concur
with severity of disease state

Uses original measurement values in analysis
and for reporting the results

Facilitates development of interpretable
visualizations for expert analyses

Accommodates varying clinical and research
questions

Prediction
accuracy

Classification performance should be
comparable to state-of-the-art classifiers

Robustness Not all patients need to have the same set of tests
performed

Must be able to use any quantifiable data and all
types of variables

Missing data should not impose problems for
using the method

Computational
speed

Allow refinement of parameters and updating of
results at interactive rates

Scalability Enable computation of the model on the fly or
beforehand as necessary

http://www.j-alz.com/issues/27/vol27-1.html#supplementarydata07
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Table 3
Interpretations and visualizations of DSI and relevance. DSI is computed by comparing the patient values to training data,

relevance is computed from the known control and diseases population values alone

DSI 0.0 0.5 1.0 

Interpretation 

Patient value matches the 

healthy controls perfectly

Patient value falls between 

control and disease populations, 

matching both equally well 

Patient value matches the AD 

population perfectly

Blue color White color Red color 
Visualization 

Relevance 0.0 0.5 1.0 

Interpretation 
Not relevant for estimating 

disease state; variable does not 

differentiate between known 

control and disease populations 

Relevant for estimating disease 

state; discrimination capability 

is halfway between random and 

perfect discrimination 

Very relevant for estimating 

disease state; variable 

discriminates perfectly between 

control and disease populations

Excluded from visualization Intermediate box size Large box size 
Visualization 

patient, such as for ADAS and MRI imaging. Corre-
lations between variables can be accounted for at this
step, e.g., by applying principal component analysis
(PCA) [30].

To obtain a total DSI value representing the combi-
nation of all data from multiple tests, the three steps
described above are repeated recursively. In lieu of raw
measurement values, the DSI values from the previous
step are now used for evaluating relevance and fitness,
and merged into a total DSI value (see Fig. 3).

The combination of DSI and relevance, schemati-
cally depicted in Fig. 4, capture the essence of patient
data in relation to the disease. DSI values indicate
which patient data are similar to the AD population
and relevance specifies how important that information
should be considered based on previously diagnosed
cases. A large DSI value and large relevance for a
neuropsychological test, for example, indicate that the
patient performed similarly to known AD population
and that the test has previously been able to dis-
criminate between healthy and AD patients with high
accuracy. On the other hand, a test with a large DSI
value but little or no relevance may usually be ignored,

since the test is unable to differentiate between the
populations.

Disease state fingerprint

In an analogy to the unique human fingerprints and
DNA fingerprints, DSF visualization forms patterns,
enabling quick visual inspection of unique disease and
patient data at multiple levels of abstraction. In DSF,
the patterns emerge from a tree of nodes rendered
according to the DSI organization, using shapes and
colors to quickly identify the patient’s disease state.
Specifically, shades of colors indicate DSI values while
relevance is indicated by node sizes (see Table 3).

The DSF tree allows rapid but detailed reviewing
of raw patient measurement data, DSI values, rele-
vance values, and the study of their relationship to the
disease profile (see Fig. 4). Measures that have zero
relevance are by default hidden from the DSF visual-
ization. Interactive implementation of the DSF allows
visualizations of data distributions (see Fig. 5) and
‘drill-down’/‘roll-up’ operations common to data min-
ing and visual analytics [29]. These operations can be
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Variable Level 

Test Level 

Disease State Index Level 
Disease State Index

ADAS MMSE MRI CSF

Variable 1
Variable 2

Variable i…
Variable.n   

Variable 1
Variable 2

Variable.

Variable 1
Variable 2 

Variable i 
Variable.n  

Variable 1
Variable 2

Variable.n   

Fig. 3. Organization of a DSI / DSF visualization tree. The tree structure follows organization of patient data consisting of individual variable
values (leaf nodes at Variable Level), performed tests (internal nodes at Test Level), and the resulting total Disease State Index (root node at
Disease State Index Level). Additional levels can be employed to modify the granularity of the tree.

Disease cases Healthy cases

Patient measure

Fig. 4. DSI values of a patient with subtle indication of AD (total DSI value = 0.56). Name of the test and DSI value is shown next to each node.
Larger nodes discriminate better between healthy and diseased patients (visualization of relevance). ‘Hot’, i.e., red, nodes highlight patient data
that fits AD profile (visualization of DSI). Here, ADAS and MRI contribute the most to the AD Disease State Index, indicated by largest node
size. MRI variables, especially volume of hippocampus, whose computation is schematically depicted on the right hand side, push the total DSI
value towards AD population.

used for hiding or revealing extra details and for inclu-
sion or exclusion of variables. User initiated changes
to DSI model selection can give more control over the
study of the patient’s disease state, making possible
personalized comparison of patient data to previous
cases that are of the same gender, age group, ethnicity,
and educational degree.

Evaluation

Objectives of the evaluations were to

1. compare the performance of the DSI to state-of-
the-art classifiers,

2. evaluate the relationship between the index val-
ues and the actual diagnoses,

3. investigate the DSI’s capability to predict conver-
sion from MCI to AD, and

4. visually inspect patient DSFs to evaluate their
clinical practicality.

In all of the analyses, index values from DSI were
compared to the probability of having AD obtained
with three reference classifiers: logistic regression
(LR) [31], probability estimates from support vec-
tor machines (SVM) [32] and Naı̈ve Bayes classifier
[33]. These classifiers were chosen as being repre-
sentative of commonly used classification methods in
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Right Hippocampus : 0,90

2 149 3 149 4 149 5 149
1 649 2 649 3 649 4 649
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Deleyed Word Recall : 0,40
AD Disease Index : 0.56

Fig. 5. If a node in the DSF tree is clicked, a comparison of patient data in relation to control and disease population distributions is displayed.
Values of the AD population are rendered in red. The healthy population is rendered in blue. Black bars denote the values of the patient being
studied. On the left, right hippocampal volume of the patient (2455 mm3) is overlaid on the distributions. In the center, an ordinal variable
(Delayed Word Recall from ADAS) is displayed as bar chart. On the right, total AD Disease State Index of the patient (0.56) is overlaid on the
control and AD population DSI values.

practical applications. Like the reference methods, the
DSI is a predictor of having AD, and they are all
in congruence, with increasing disease probabilities
generally resulting in increasing DSI values. Com-
parisons between values resulting from the DSI and
the reference methods are appropriate if one considers
the values being used by human readers for decision
support. All methods were evaluated using the same
training and test data. For LR and SVM, variables not
significant between the control and disease populations
(Student’s t-test result of p > 0.05) were excluded. For
all reference methods, missing values were handled
appropriately. For DSI, this type of pre-processing of
the data was not required due to its design.

Comparison to actual diagnoses was performed by
training the methods with HC and AD subjects and
testing with all patients. The methods’ ability to assign
values that have a relation with interval-level diag-
noses (HC = 0

3 , SMCI = 1
3 , PMCI = 2

3 , and AD = 3
3 ) was

evaluated using Kruskal-Wallis non-parametric test,
Pearson’s linear correlation test, and visual inspection.
Capability to predict conversion of MCI patients to AD
was evaluated by determining area under curve (AUC)
measures from receiver-operator curves (ROC) using
SMCI-PMCI datasets. MCI patients who obtained
index/probability values within the upper or lower
ranges of the scale were pooled together to determine
classification accuracy for these subsets separately.
The patients included in each subset were selected from
both ends of the index/probability value range [0, 1],
extending to a distance of 0.02, 0.05, 0.1, 0.2, 0.3, and
finally 0.4 from either end.

In all analyses, ten iterations of stratified (with same
proportions of class labels) 10-fold cross validation
were performed to produce robust estimates of per-
formance metrics associated with the methods. Using

such a large number of iterations is especially impor-
tant for data where the differences between classes are
subtle and results can vary considerably over consec-
utive iterations. All analyses were implemented and
executed within Matlab version R2010a, using lib-
svm [32] implementation of SVM and MathWorks®

Statistics toolbox implementations of LR and Bayes
classifier.

RESULTS

Correlation between disease state index and
diagnosis

DSI, LR, SVM, and Bayes classifier were evalu-
ated using baseline data from the ADNI database to
determine how they relate to the diagnostic classes of
199 healthy controls, 190 SMCIs, 154 PMCIs, and 163
ADs. Figure 6 shows the box-plots and distributions of
values assigned to the patients using the best perform-
ing dataset, best individual test dataset, and the worst
dataset (ALL, ADAS, and TMT respectively).

The graphs clearly illustrate that DSI is different in
nature from the reference methods, distributing index
values evenly over the whole scale. The significance
of DSI’s evident linearity can be appreciated by com-
paring results from two example patients whose total
scores from ADAS differ only slightly (17 vs. 19). With
data from ADAS alone, DSI gave to these patients
indices of 0.36 and 0.57 (a moderate difference of
0.21), respectively. For the same patients, the probabil-
ity of having AD estimated by LR were 0.39 and 0.73
(difference of 0.34), by SVM 0.23 and 0.95 (difference
of 0.72), and by Bayes 0.0 and 0.75 (difference of 0.75).
Especially with SVM and Bayes, the inflated proba-
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Fig. 6. Index and probability values obtained from evaluating datasets ALL, ADAS, and TMT with DSI, LR, SVM, and Bayes. Results are
displayed as box plots and probability density estimates of patient classes NL (blue), SMCI (green), PMCI (yellow), and AD (red) according to
index/probability values assigned to them by the methods. In box plots, the line in the middle is the median, the upper and lower ends of the
box are the 75% and 25% percentiles, and the whiskers give an indication of the range. Values of two arbitrarily chosen SMCI (light blue) and
PMCI (brown) patients with relatively similar clinical test results and biomarker discoveries are visualized on top of each distribution graph.
Locations of the stems demonstrate the differences between the methods when assessing individual patients.

bilities obscure what in reality is a small difference in
cognitive performance between the patients.

All methods distinguished between the diagnos-
tic categories with high significance (p < 0.001 in
Kruskal-Wallis test) using all datasets. Linear corre-

lation with interval-level diagnoses also attained high
significance (p < 0.001 in Pearson) using all datasets.
Table 4 shows the eight best and eight poorest perform-
ing method/dataset combinations from both statistical
tests.
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Table 4
Results from the Kruskal-Wallis and Pearson tests using DSI, LR, SVM, and Bayes for discriminating between the diagnostic classes of NL,

SMCI, PMCI, and AD and for linear correlation with the interval-level diagnoses, respectively

Kruskal-Wallis Pearson

Rank Method Dataset χ2 p Rank Method Dataset r p

1 DSI ALL 117.6 (5.8) 8.67E–24 1 DSI ALL 0.56 (0.01) 8.53E–30
2 Bayes MMSE + ADAS + MRI + CSF 116.4 (6.0) 1.39E–23 2 DSI MMSE + ADAS + MRI + CSF 0.54 (0.01) 2.70E–26
3 Bayes MMSE + ADAS + MRI 113.1 (6.4) 1.05E–22 3 DSI ADAS 0.53 (0.02) 2.88E–26
4 SVM ALL 113.3 (6.8) 1.45E–22 4 DSI MMSE + ADASvMRI 0.52 (0.01) 6.10E–25
5 Bayes ALL 118.2 (7.1) 1.51E–22 5 SVM ALL 0.50 (0.02) 2.23E–22
6 Bayes MMSE + ADAS 114.5 (6.6) 2.50E–22 6 LR ADAS 0.51 (0.02) 2.52E–22
7 DSI MMSE + ADAS + MRI + CSF 108.4 (5.6) 1.02E–21 7 SVM MMSE + ADAS + MRI 0.49 (0.01) 7.75E–22
8 SVM MMSE + ADAS + MRI 107.7 (5.7) 1.31E–21 8 DSI MMSE + ADAS 0.49 (0.01) 9.92E–22
: : : : : : : : :

33 LR TMT 40.3 (6.5) 1.25E–06 33 DSI APOE 0.28 (0.03) 1.72E–06
34 SVM TMT 39.7 (6.4) 2.49E–06 34 LR APOE 0.28 (0.03) 1.78E–06
35 Bayes TMT 35.7 (6.6) 4.49E–06 35 DSI CSF 0.38 (0.03) 2.28E–06
36 DSI CSF 29.5 (3.0) 5.01E–06 36 Bayes APOE 0.28 (0.03) 2.39E–06
37 DSI TMT 37.3 (6.5) 5.59E–06 37 Bayes CSF 0.37 (0.03) 2.43E–06
38 SVM CSF 26.9 (3.5) 2.42E–05 38 Bayes TMT 0.28 (0.03) 4.16E–06
39 Bayes CSF 26.4 (3.2) 2.45E–05 39 SVM CSF 0.35 (0.03) 4.63E–06
40 SVM APOE 27.0 (5.7) 6.23E–05 40 SVM APOE 0.27 (0.03) 8.71E–06

The table shows method/dataset performance ordered by the mean of p-values over 10 × 10-fold cross-validation iterations. The Kruskal-Wallis
test statistic χ2 and Pearson test statistic r shown are the mean and standard deviation over 10 × 10-fold cross-validation iterations.

Prediction of MCI to AD conversion

Capability to predict conversion from MCI to AD
was evaluated with 190 SMCI and 154 PMCI cases
from the ADNI database. Figure 7 shows results from
two of the best individual tests and from the four
increasingly complete combinations of tests. In gen-
eral, AUC improves and standard deviation decreases
through having better or more patient data available.

Relevance parameters obtained from DSI indicate
that within the ADNI database, ADAS is the most rel-
evant single test for predicting conversion from MCI
to AD, followed by MRI, APOE, CSF, MMSE, and
finally TMT (see Table 5). Within ADAS, relevance
values are very similar to weights of a recently intro-
duced ADAS composite [34]. Between all individual
variables from all tests, DSI considers the most relevant
to be Delayed Word Recall from ADAS (relevance of
0.294), Left Middle Temporal Lobe from MRI (0.262),
and Total Tau from CSF (0.258).

Levels of confidence for predicting conversion
from MCI to AD

Based on data alone, there are no machine learn-
ing methods that can predict conversion from MCI to
AD for all cases reliably. Therefore, clinicians always
need to consider all available evidence. Nevertheless,
index/probability values obtained with the complete
dataset (ALL) were examined to determine if the meth-
ods studied here could provide more confidence for

diagnosing certain subsets of patients. From Table 6
it can be seen that extreme value ranges provide con-
siderably better prediction accuracies and there is a
small subset of patients where the classification meth-
ods attain perfect prediction accuracy.

Visual inspection of disease state fingerprints

The DSFs of several SMCI and PMCI patients were
inspected to confirm that they quickly reveal the state
of the patient data in relation to AD population and
highlight the tests and variables contributing to the
results. Fig. 8 shows example DSFs for clear SMCI,
subtle SMCI, subtle PMCI, and clear PMCI cases. With
the clear cases, nearly all variables point towards AD
(shades of red) or against it (shades of blue). With the
subtle cases, there is a mix of colors that show which
patient data indicate AD and which do not.

DISCUSSION

The DSF provides a quickly interpretable visual
overview of patient state, obtained from evidence-
based statistical analysis of patient data. It draws the
clinician to data that are the most relevant, omitting the
need to go over tens or hundreds of data points individ-
ually. DSF clearly discloses the factors contributing to
the results, highlights the important measures, and thus
supports application of clinical judgment. In its design,
equal emphasis was given to prediction accuracy and
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Fig. 7. ROC curves for individual tests and combinations of tests for predicting conversion from MCI to AD. Numbers denote AUC and standard
deviations of AUC with the respective datasets over the 10 × 10-fold cross-validation iterations.
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Table 5
Relevance values for all data, individual tests, and best individual
features (where relevance >0.200) for predicting conversion from

MCI to AD based on ADNI data

Test Relevance (SD)

Disease State Index 0.420 (0.019)
ADAS 0.333 (0.022)

Delayed Word Recall 0.294 (0.018)
Orientation 0.256 (0.017)
Word Recall 0.256 (0.017)
Word Recognition 0.203 (0.017)

MRI 0.300 (0.021)
Left Middle Temporal Lobe 0.262 (0.018)
Right Middle Temporal Lobe 0.246 (0.020)
Left Inferior Temporal Lobe 0.221 (0.021)
Left Hippocampus 0.207 (0.022)
Right Hippocampus 0.201 (0.020)
Right Enthorinal Cortex 0.201 (0.020)

APOE 0.256 (0.016)
Allele B of genotype A/B 0.256 (0.016)

CSF 0.249 (0.029)
Total Tau 0.258 (0.025)
Amyloid-� 0.221 (0.025)

MMSE 0.249 (0.024)
no individual features with relevance >0.200

TMT 0.207 (0.022)
Time to Complete Trail B 0.202 (0.022)

The table shows mean relevance values and their standard deviation
over 10 × 10-fold cross-validation.

to clinical practicality. To the authors’ knowledge
there exists no other evidence-based data visualization
methods developed with a similar philosophy. Several
established machine learning methods were considered
for the foundation of DSF, but none were found sat-
isfactory. For example, regression analysis cannot be
capitalized fully when working with existing discrete
AD diagnoses that do not include much information
about the stage or severity of the disease. SVM, with

its high dimensional decision boundary, is too abstract
for human interpretation. Naı̈ve Bayes works well as a
classifier, but results in very unrealistic and unpracti-
cal disease probabilities. Thus, DSI was developed to
provide a good foundation for visual expert analysis of
progressing disease state.

The DSI model of progressing disease state was able
to discriminate well between the diagnostic classes of
healthy, SMCI, PMCI, and AD and attained good levels
of linear correlation, superior to the reference classi-
fiers. Improved linearity is clearly evident with visual
inspection of the value distribution graphs in Fig. 6,
in which reference methods lean heavily on the head
and tail values of the scale even when source data
differs only slightly. Thus, DSI is truly indicative of
patient state between healthy and AD and appears to
correspond well with clinical practice. Even though
maximizing classification accuracy was not the only
goal, DSI’s capability to predict conversion from MCI
to AD was similar to the reference classifiers. Anal-
ysis of the relevance values reinforced the view that
combinations of tests are required for reliable early
diagnoses. Interestingly, the relatively simple and com-
putationally low-cost method for computing relevance
produced almost the same weighting factors as a novel
method employed for prediction of 12 months conver-
sion from MCI to AD [34].

Currently, clinicians are forced to browse test results
one by one, possibly losing track of the big picture.
Analysis of extreme DSI values indicates that there
are MCI cases where data leaves little doubt as to
whether a patient has AD or not. Particularly those
clinicians with less experience might be more confi-
dent to diagnose AD at an early stage if they were

Table 6
Classification accuracies of DSI, LR, SVM, and Bayes when observing subgroups of SMCI and PMCI patients based on index/probability values

assigned to them

Distance from 

end of scale [0, 1] 

< 0.02   

Allowed value 

ranges 

DSI None assigned 100% (0.7%) 93.6% (9.1%) 84.0% (30.2%) 75.6% (63.7%) 

LR 52.5% (1.2%) 73.6% (5.1%) 71.9% (13.2%) 72.9% (31.7%) 71.4% (52.3%) 67.5% (75.1%) 

SVM 100% (1.0%) 95.1% (4.2%) 90.7% (13.1%) 84.3 % (32.3%) 77.3% (53.0%) 72.0% (76.0%) 

BAYES 77.6% (57.0%) 74.2% (66.1%) 72.1% (74.2%) 71.1 % (82.7%) 70.7% (88.3%) 70.0% (94.2%) 

< 0.4 < 0.3  < 0.2  < 0.1< 0.05

None assigned 

In parentheses is the percentage of patients assigned to the subgroup over 10 × 10-fold cross-validation iterations. For example, DSI assigned an
index value <0.2 or >0.8 to 9.2% of the patients, which was a correct prediction for 93.7% of cases, i.e., classification accuracy for the subgroup
was 93.7%.
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Fig. 8. Four patients visualized using the DSF. Starting from the left, the figure shows two stable MCI (SMCI) patients and two progressive
MCI (PMCI) patients. Box sizes (denoting relevance) indicate capability of a variable or test to discriminate between SMCI and PMCI cases.
The nodes are reordered top to bottom according to this measure. Colors indicate which group the patient data fits better; blue color equals
SMCI, red color equals PMCI. A unique disease state fingerprint emerges from the node sizes and color codes for each patient, allowing quick
evaluation of patient state and reviewing of individual tests and variables contributing to the results.

able to see all data at once, and also see how patient
data relate with previously diagnosed disease popu-
lation at their clinic. While the DSI and DSF increase
the amount of information available to a clinician, they
also allow clinicians to concentrate on what is impor-
tant and ignore irrelevant information, making the most
of existing data.

When compared to many other machine learning
methods, the benefits of DSI and DSF are numerous.
Due to linearity, small changes in patient data cause
only small changes in DSI, making interpretation of
DSF easier and longitudinal follow-ups consistent. The
methods are data agnostic, able to work with any tests
or variables in use at a particular clinic. They work with
raw test and measurement values, increasing familiar-
ity and requiring no pre-processing of data, feature
selection, or data cleanup. All data acquisition modal-
ities are quantified both in isolation and as a part of
the whole, providing additional context to the results.
It is very easy to support different types of tests and
variables (scalar, nominal, ordinal, even textual with
text mining methods) with suitable fitness functions.
If desired, the probability of a patient having AD can
be computed using the DSI values obtained during
its evaluation. Unlike as is the case with many other
machine learning methods, sparse data creates no prob-

lems. Each variable is initially treated individually, and
only used if the data exists. Additionally, as long as the
training set patients are representative of the control
and disease populations, there is no need to have very
large quantities of data.

Further potential is anticipated from interactive
implementation of DSF, which can provide a quick
path to personalized healthcare. Limiting comparison
of patient data to cases that are of same gender, age,
ethnicity, or educational degree provides personalized
results for that patient. A clinical application could
also employ relevance measures to suggest additional
tests to be done, based on their ability to discriminate
between healthy and diseased cases. Interactive visual-
izations of disease population distributions with patient
values overlaid on them are an expressive way of com-
paring patient data to previously diagnosed cases.

Further studies are being planned to cover aspects
of DSI and DSF not reported here. Non-linear depen-
dencies between the variables, e.g., differences in
cognitive tests due to varying levels of education, were
not considered in this work. Stratification of training
data will be studied to see if regression of variables
based on demographics, such as age and education,
further improves the results. Bootstrapping would
allow better relevance estimates and, more importantly,
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would also provide statistical measures that could
improve analysis of patient data [35]. Robustness of
the DSI will be evaluated with data from several lon-
gitudinal studies of AD and other neurodegenerative
diseases. Performance of the proposed system will also
be examined when there are heavy correlations and
other adverse conditions within the data. Utility of an
interactive DSF tool is being evaluated with clinicians
using existing data from ADNI. There are also plans
to take part in upcoming longitudinal studies where an
implementation of DSF is provided to the clinicians.

Diagnostic guidelines for AD emphasize the
congruence of neuropsychological test results and
biomarkers. DSF was designed to enable quick visual
analysis of all patient data as a whole. It is a versa-
tile decision support system that uses locally available
patient data, presents a synthesis of the information
in an understandable manner, and allows an expert
to interpret and report the results within the diagnos-
tic process. The proposition is that the DSF can be
a clinically relevant tool which enables clinicians to
make better and more consistent decisions in daily
practice.
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K, Kivistö SM, Sipola P, Kaartinen MA, Kärkkäinen ST,
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